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This article considers a two-stage assembly system with imperfect processes. The former is an automatic
stage in which the required components are manufactured. The latter is a manual stage which deals with
taking the components to assemble the end product. In addition, the component processes are indepen-
dent of each other, and the assembly rate is variable. Shortage is allowed, and the unsatisfied demand is
completely backlogged. Then, we formulate the proposed problem as a cost minimization model where
the assembly rate and the production run time of each component process are decision variables. An
algorithm for the computations of the optimal solutions under the constraint of assembly rate is also pro-
vided. Finally, a numerical example and sensitivity analysis are carried out to illustrate the model.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past few decades of research on economic manufactur-
ing quantity (EMQ) model, the scads of issues have appeared. The
traditional EMQ model is developed based on the single item and
simple (single-stage) production system. For example, Jamal,
Sarker, and Mondal (2004) dealt with the optimum batch quantity
in a single-stage production system in which rework is done under
two different operational policies to minimize the total system
cost. Cárdenas-Barrón (2007) presented the correct solutions to
the two numerical examples presented by Jamal et al. (2004). Fur-
thermore, Cárdenas-Barrón (2008) considered a simple derivation
of the two inventory policies proposed by Jamal et al. (2004). In
2009, Cárdenas-Barrón (2009b) further developed an economic
production quantity (EPQ) model with planned backorders for a
single product at a single-stage manufacturing system that gener-
ates imperfect quality products, and all these defective products
are reworked in the same cycle.

However, in the present industrial settings, the end product is
manufactured through multi-stage production system, in which
the raw material is transformed into the end product in a series
of processing stages such as forming, cutting, grinding, assembling,
ll rights reserved.
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polishing, and painting. Besides, since the production rates of all
stages are not exactly the same, the semi-finished products are
going to be accumulated between the stages under no starveling
stage. Therefore, the holding cost of semi-finished products should
be taken into account. Note that the two-stage system can be also
used to approximate more complex multi-stage system. Early the-
orization of single product in a multi-stage perfect system is dis-
cussed by Taha and Skeith (1970). After, several authors have
developed various extensions for the multi-stage system in the lit-
eratures. Szendrovits (1975) considered that the manufacturing
cycle time as a function of the lot size in the EPQ model. Kumar
and Vrat (1979) developed a stochastic model to determine the
optimum level of inventory at every stage of production. Karimi
(1992) determined the optimal stationary, cyclic schedules for
minimizing the sum of set-up and inventory costs. Kim (1999)
developed various lot sizing and inventory batching (i.e., opera-
tion-unit batching (OUB) and unit–unit batching (UUB)) models
under different system characteristics and lot sizing and inventory
policies.

Assembly process is a practical production system frequently
occurred in the manufacturing industry, and is one of the two-
stage (multi-stage) production systems. The former stage is to
manufacture required components. In the latter stage, the end
product is assembled from these components. Some researchers
have studied the multi-stage assembly system. Crowston, Wagner,
and Williams (1973) considered the optimal lot size problem for
multi-stage assembly systems where each facility may have many
predecessors but only a single successor. Schwarz and Schrage
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(1975) proposed optimal and near optimal polices for multi-stage
assembly systems under continuous review with constant demand
over an infinite planning horizon. Schmidt and Nahmias (1985)
considered that an end product is assembled from two compo-
nents. Besides, the end product has final demand, which is as-
sumed to be random. Dellaert, De Kok, and Wang (2000)
analyzed two alternative strategies for the production control of
an assembly system. Dellaert and De Kok (2004) studied a simple
multi-stage assembly system, with stationary stochastic demand
for a single final product that is made-to-stock.

In many production systems, the defective good is a realistic
phenomenon due to deterioration of machine. However, all re-
searches above assumed that the production facility is perfect
and all products are good quality. In fact, the product quality is
not always perfect and usually depends on the state of the produc-
tion process. Some studies have pointed out that the unreliable
production facility in the multi-stage production system.
Chakraborty and Rao (1988) determined the optimal batch quan-
tity in a multi-stage production system considering the rework of
defective items. Giri, Yun, and Dohi (2005a) considered an unreli-
able two-stage lot sizing problem in which the failure-prone
machine at the first stage produces semi-finished products in
batches that are transferred continuously to the next stage where
the failure-free machine produces the finished products in batches.
Darwish and Ben-Daya (2007) investigated the effect of imperfect
production processes involving variable the frequency of preven-
tive maintenance. Sarker, Jamal, and Mondal (2008) developed
models for an optimal batch quantity for a multi-stage production
system that allows rework of defective items under two opera-
tional policies reworking defectives within the same cycle and
after N cycles. Cárdenas-Barrón (2009a) further corrected the
mathematical expressions presented by Sarker et al. (2008). Pearn,
Su, Weng, and Hsu (2011) considered a two-stage production sys-
tem, in which the former and the latter are automatic process and
manual process, respectively. Besides, the capital investment in
process quality is taken into account. Unfortunately, they did not
consider for the multi-stage assembly system.

On the other hands, most researches usually assume that the
production rate is predetermined and inflexible. In real life,
the manufacturers often shift the production rate for achieving
the cost-effective production. Recently, some articles developed
various unit production costs which are the convex functions of
the production rate, and the production rate is regarded as a deci-
sion variable (Eiamkanchanalai & Banerjee, 1999; Giri, Yun, & Dohi,
2005b; Khouja & Mehrez, 1994; Larsen, 1997). Besides, some
authors also proposed various settings for the production rate,
for example, the production rate varies with time (Balkhi &
Benldlerouf, 1996), or on-hand inventory level (Bhunia & Maiti,
1997; Su & Lin, 2001). Ben-Daya, Hariga, and Khursheed (2008)
further considered the shifting production rate in EPQ model.

In this paper, we probe an assembly process into the two-stage
model proposed by Pearn et al. (2011). The former is an automatic
stage in which the required components are manufactured. The
component processes start at the same time and are independent
each other. The latter is a manual stage which deals with assem-
bling the components to the end product. To the best of our knowl-
edge, production rate of automatic process is always higher than
manual process. Under this situation, the components are going
to be accumulated between two stages. Most of manufacturing
industries correspond to automatic-manual (two-stage) assembly
system such as computer, semiconductor, TFT–LCD, automobile,
cell phone, and food industries. Besides, the production rates of
the components are different, and the assembly rate is variable
and can be controlled by modulating manpower. Note that Pearn
et al. (2011) considered that the production rates in two stages
are invariable. Then, we formulate the proposed problem as a cost
minimization model where the assembly rate and the production
run time of each component process are decision variables. We
also prove that the optimal solution not only exists but also is un-
ique. Finally, a numerical example is presented to demonstrate the
theoretical results and the solution procedure, and then the sensi-
tivity analysis of the optimal solution with respect to major param-
eters is also carried out.

2. Notation and assumptions

2.1. Notation

To develop the mathematical model of the two-stage assembly
system with imperfect processes, the notation adopted in this pa-
per includes as follows.

System parameters

n
 Number of required components in automatic stage

pi
 Production rate of the component i in units per unit time,

where i = 1, 2, . . ., n, and p1 > p2 > . . . > pn
D
 Demand rate in units per unit time

k
 Setup cost per cycle

hi
 Holding cost for a component i per unit time, where

i = 1, 2, . . ., n

he
 Holding cost for an end product per unit time

s
 Shortage cost for an end product per unit time

hi
 Defective rate of component i in automatic stage, where

i = 1, 2, . . ., n

he
 Defective rate of end product in manual stage

ri
 Rework cost for a defective component i, where

i = 1, 2, . . ., n

re
 Rework cost for a defective end product

tid
 Time period when inventory of the component i depletes,

where i = 1, 2, . . ., n

ted
 Time period when inventory of the end product depletes

tb
 Time period when backorder is replenished

T
 Length of cycle time

Zi
 Maximum inventory level of the component i, where

i = 1, 2, . . ., n

Ze
 Maximum inventory level of the end product

Zb
 Maximum backorder level of the end product
Decision variables

pe
 Assembly rate of the end product in units per unit time

t0
 Time period when there is no production and shortage

occurs

ti
 Production run time of the component i, where

i = 1, 2, . . ., n
2.2. Assumptions

In addition, the following assumptions are used throughout this
paper:

(1) The production cycle repeats infinitely.
(2) The production system is separated into two stages, auto-

matic stage (Stage 1) and manual stage (Stage 2). This sys-
tem is depicted in Fig. 1. From Fig. 1, the required
components are manufactured by each machine in Stage 1.
Then these components are transported from each ware-
house to the assembly line. Finally, the end products are
assembled from required components in Stage 2. Note that
each process work has own production line and machines.
Therefore, the production processes of two stages are inde-
pendent each other. In addition, all of components and end



Fig. 1. Two-stage assembly system.
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products must be inspected for finding the defective items
before putting these into warehouses.

(3) For the sake of simplicity, we assume that the process qual-
ity of two stages is independent, and the inspection time is
so short that it can be neglected. Moreover, the rework time
of defective items is neglected in this paper.

(4) The production rate of the former stage must always be
greater than the latter stage (or demand rate) due to the
basic assumption of the EMQ model. Therefore, in order to
avoid starvation in that stage due to lack of input from the
previous stage, the minimal production rate, assembly rate,
and demand rate should satisfy the condition pn > pe > D.

(5) Based on Giri et al. (2005b), the production cost for an end
product consists of the following three elements: (a) the
material and manufacturing costs of required components
in Stage 1, b0 P 0; (b) the labor cost for taking the compo-
nents to assemble an end product in Stage 2, b1/pe, where
b1 P 0 is the labor cost per unit time; (c) the manpower cost
for increasing assembly rate in Stage 2, b2pe, where b2 P 0 is
the marginal cost of assembly rate.

3. Mathematical formulation

Under the notation and assumptions in the previous section, the
graphic representation of inventory level can be shown as in Fig. 2.
Referring to Fig. 2, we have the following results:

I. The production run time of the component i and the cycle time:
Since the model is completely backlogged and perfect rework

process, the production quantities of all components are equal to
the demand in a cycle (i.e, piti = pntn = DT). Therefore, ti and T can
be expressed as

ti ¼
pntn

pi
; ð1Þ
where, i = 1, 2, . . ., n, and

T ¼ pntn

D
; ð2Þ

respectively.
II. The maximum inventory level of the component i and the max-

imum backorder level:

Zi ¼ ðpi � peÞti; ð3Þ

where i = 1, 2, . . ., n, and

Zb ¼ Dt0 ¼ ðpe � DÞtb: ð4Þ

III. The time period when inventory of the component i depletes:

tid ¼
Zi

pe
¼ ðpi � peÞti

pe
¼ pi

pe
� 1

� �
ti; ð5Þ

where i = 1, 2, . . ., n.
IV. The maximum inventory level of the end product:

Ze ¼ ðpe � DÞðtn þ tnd � tbÞ

¼ ðpe � DÞ tn þ
pn

pe
� 1

� �
tn �

Zb

pe � D

� �
ðfrom Eq:ð4ÞÞ

¼ ðpe � DÞ pn

pe
tn �

D
pe � D

t0

� �
: ð6Þ

Based on the above results, the total cost per cycle consists of
the following six elements:

1. Setup cost:

The setup cost per cycle (denoted by Cs) is

Cs ¼ k: ð7Þ

2. Holding cost of end product:



Fig. 2. The graph of inventory level during time period [0, T].
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The holding cost of end product per cycle (denoted by HCe) is
given by

HCe ¼
heZeðT � t0 � tbÞ

2

¼ heDðpe �DÞ
2pe

pn

D
tn �

pet0

pe �D

� �2

: ðfrom Eqs:ð1Þ; ð2Þ;andð6ÞÞ

ð8Þ

3. Holding cost of all components:
The holding cost of all components per cycle (denoted by HCc) is
given by

HCc ¼
Pn
i¼1

hiZiðti þ tidÞ
2

¼ p2
nt2

n

2
Pn
i¼1

hi
1
pe
� 1

pi

� �� �
: ðfrom Eqs:ð1Þ; ð3Þ; andð5ÞÞ ð9Þ

4. Shortage cost:
The shortage cost per cycle (denoted by SC) is given by

SC ¼ sZbðt0 þ tbÞ
2

¼ speD
2ðpe � DÞ t

2
0 ðfrom Eq:ð4ÞÞ ð10Þ

5. Rework costs:
The rework costs for defective end product and all components
per cycle (denoted by RC) is given by

RC ¼ rehe þ
Pn
i¼1

rihi

� �
DT ¼ rehe þ

Pn
i¼1

rihi

� �
pntn: ðfrom Eq:ð2ÞÞ

ð11Þ

6. Production cost:
Based on Giri et al. (2005b), the production cost per cycle
(denoted by PC) is

PC ¼ b0 þ
b1

pe
þ b2pe

� �
pntn: ð12Þ
Therefore, the total cost per unit time (denoted by AC(t0, tn, pe))
is given by

ACðt0; tn; peÞ ¼
1
T
� fHCe þ HCc þ SC þ RC þ PC þ Csg

¼ D
pntn

� p2
nt2

n

2
Pn
i¼1

hi
1
pe
� 1

pi

� �� ��

þ
heDðpe � DÞ pntn

D �
pet0

pe�D

� �2

2pe
þ speDt2

0

2ðpe � DÞ

þ rehe þ
Pn
i¼1

rihi

� �
þ b0 þ

b1

pe
þ b2pe

� �� �
pntn þ k

	
:

ð13Þ
Remark 1. If the end product is assembled from only one required
component, i.e., n = 1, and the assembly rate is invariable, i.e.,
b0 = b1 = b2 = 0, the objective function will be reduced to Pearn
et al. (2011) without capital investment in process quality. The
decision variables are production run time of all components,
(t1, t2, . . ., tn), shortage run time (t0), and assembly rate (pe), and
these variables are independent each other. Note that t1, t2, . . ., and
tn�1 are the function of tn from Eq. (1). Therefore, our problem is to
minimize the total cost per unit time, AC(t0, tn, pe), by simulta-
neously optimizing t0, tn, and pe, constrained on t0 > 0, tn > 0, and
D < pe < pn.

The detail solution procedure is shown as follows. The
necessary conditions for the total cost per unit time AC(t0, tn, pe)
in Eq. (13) to be minimized are o AC(t0, tn, pe)/ o t0 = 0, o
AC(t0, tn, pe)/ o tn = 0, and o AC(t0, tn, pe)/ o pe = 0, simultaneously.
That is,

@ACðt0; tn;peÞ
@t0

¼ D
pntn

�hepntn þ
peDðhe þ sÞt0

pe � D

� �
¼ 0; ð14Þ



Fig. 4. Graphical representation of ACðpejt�0; t�nÞ.

Table 1
Iterations to find the optimal solutions.

j pej t�0 t�3 LPn pej+1 pej+1 � pej

1 400.000 0.27285 1.84173 0.74059 370.556 �29.444
2 370.556 0.18942 1.67872 0.83192 359.490 �11.066
3 359.49 0.15909 1.62231 0.85104 355.104 �4.386
4 355.104 0.14718 1.60058 0.85652 353.324 �1.780
5 353.324 0.14237 1.59186 0.85841 352.595 �0.729
6 352.595 0.14040 1.58831 0.85913 352.295 �0.300
7 352.295 0.13959 1.58685 0.85942 352.171 �0.124
8 352.171 0.13925 1.58625 0.85953 352.120 �0.051
9 352.12 0.13912 1.58600 0.85958 352.099 �0.021
10 352.099 0.13906 1.58590 0.85960 352.091 �0.008
11 352.091 0.13904 1.58586 0.85961 352.087 �0.004
12 352.087 0.13903 1.58584 0.85961 352.086 �0.001
13 352.086 0.13902 1.58583 0.85961 352.085 �0.001
14 352.085 0.13902 1.58583 0.85961 352.085 0.000

Sol: p�e ¼ 352:085, t�0 ¼ 0:13902, t�3 ¼ 1:58583, t�1 ¼ 1:05722, t�2 ¼ 1:26866 Fig. 3. The total cost per unit time, ACðt0; t3jp�e ¼ 352:085Þ.
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@ACðt0; tn;peÞ
@tn

¼ D
pnt2

n

p2
nt2

n

2
Pn
i¼1

hi
1
pe
� 1

pi

� �� ��

� speDt2
0

2ðpe � DÞ � kþ heDðpe � DÞ
2pe

� pntn

D

� �2

� pet0

pe � D

� �2
" #)

¼ 0; ð15Þ

and

@ACðt0; tn;peÞ
@pe

¼ D
pntn

p2
nt2

n

2p2
e

he �
Pn
i¼1

hi

� ��

� ðhe þ sÞD2t2
0

2ðpe � DÞ2
þ b2 �

b1

p2
e

� �
pntn

)
¼ 0: ð16Þ

It is not easy to find the closed-form solution of (t0, tn, pe) from
Eqs. (14)–(16). Besides, due to the high-power expression of the
exponential function, the convex property of the total cost per unit
time cannot be proved by using the Hessian matrix. Instead, we
solve the problem by using the following search procedure. First,
we prove that for any given pe e (D, pn), the optimal solution of
(t0, tn) (say ðt�0; t�nÞ) not only exists but also is unique (the proof is
shown as in Appendix A).

Next, we study the optimal assembly rate also exists and is un-
ique under the solution ðt�0; t�nÞ. For given t�0 and t�n, the first-order
necessary condition for ACðpejt�0; t�nÞ to be minimum is

dACðpejt�0; t�nÞ
dpe

¼ D
pnt�n

p2
nt�2n

2p2
e

he �
Pn
i¼1

hi

� �
� ðhe þ sÞD2t�20

2ðpe � DÞ2

(

þ b2 �
b1

p2
e

� �
pnt�n

	
¼ 0: ð17Þ

From Eq. (17), we have

p2
nt�2n

2p2
e

he �
Pn
i¼1

hi

� �
� ðhe þ sÞD2t�20

2ðpe � DÞ2
þ b2 �

b1

p2
e

� �
pnt�n ¼ 0: ð18Þ

Let L(pe) denote the left hand side of Eq. (18), i.e.,

LðpeÞ ¼
p2

nt�2n

2p2
e

he �
Pn
i¼1

hi

� �
� ðhe þ sÞD2t�20

2ðpe � DÞ2
þ b2 �

b1

p2
e

� �
pnt�n: ð19Þ

We first rewrite Eq. (18) and have

p2
nt�2n

2p2
e

he �
Pn
i¼1

hi

� �
� ðhe þ sÞD2t�20

2ðpe � DÞ2
� b1pnt�n

p2
e
¼ �b2pnt�n:

Because the right hand side �b2pnt�n < 0, then we have D < 0,
where
D � p2
nt�2n

2p2
e

he �
Pn
i¼1

hi

� �
� ðhþ sÞD2t�20

2ðpe � DÞ2
� b1pnt�n

p2
e

;

Next, taking the first-order derivative of L(pe) with respect to pe,
we obtain

dLðpeÞ
dpe

¼�p2
nt�2n

p3
e

he�
Pn
i¼1

hi

� �
þðheþ sÞD2t�20

ðpe�DÞ3
þ2b1pnt�n

p3
e

¼� 2
pe

p2
nt�2n

2p2
e

he�
Pn
i¼1

hi

� �
�ðheþ sÞD2pet�20

2ðpe�DÞ3
�b1pnt�n

p2
e

( )

¼� 2
pe

p2
nt�2n

2p2
e

he�
Pn
i¼1

hi

� �
�ðheþ sÞD2t�20

2ðpe�DÞ2
� 1þ D

pe�D

� �
�b1pnt�n

p2
e

( )

¼� 2
pe

Dþðheþ sÞD3t�20

peðpe�DÞ3
> 0:

Therefore, L(pe) is a strictly increasing function of pe e (D, pn).
Furthermore, calculating the following limit:

lim
pe!Dþ

LðpeÞ ¼ �1 < 0: ð20Þ

According to the above, it is clear that when the stock of end
product increases, the total cost per unit time under the solution
ðt�0; t�nÞ;ACðpejt�0; t�nÞ, decreases. It implies that although the hold-
ing cost of end product increases, the holding cost of all compo-
nents decreases. Next, we also calculate the following limit and
define as LPn.



Table 2
Effect of changes in various parameters of the inventory model.

Parameter % Change Optimal solutions

t�0 t�1 t�2 t�3 T� p�e AC

h1 50 0.13842 1.00830 1.20996 1.51246 2.01661 354.795 4060.15
25 0.13870 1.03170 1.23804 1.54755 2.06340 353.458 4057.49
�25 0.13938 1.08520 1.30224 1.62779 2.17039 350.671 4051.91
�50 0.13980 1.11605 1.33926 1.67407 2.23209 349.210 4048.96

h2 50 0.14535 0.99950 1.19940 1.49925 1.99900 358.681 4062.27
25 0.14228 1.02616 1.23140 1.53925 2.05233 355.441 4058.62
�25 0.13551 1.09377 1.31252 1.64065 2.18753 348.584 4050.62
�50 0.13162 1.13737 1.36485 1.70606 2.27474 344.900 4046.18

h3 50 0.16920 1.06165 1.27398 1.59247 2.12330 365.539 4058.85
25 0.15353 1.05533 1.26640 1.58300 2.11066 358.706 4056.99
�25 0.12497 1.06712 1.28055 1.60069 2.13425 345.523 4052.10
�50 0.11073 1.08580 1.30296 1.62870 2.17160 338.879 4049.05

he 50 0.14848 1.01684 1.22021 1.52526 2.03368 346.363 4056.96
25 0.14479 1.03371 1.24045 1.55056 2.06741 348.867 4056.00
�25 0.12967 1.09224 1.31068 1.63836 2.18447 356.417 4053.04
�50 0.11362 1.15021 1.38026 1.72532 2.30043 362.696 4050.55

s 50 0.09778 1.02540 1.23048 1.53810 2.05080 347.656 4056.47
25 0.11492 1.03858 1.24629 1.55786 2.07715 349.557 4055.74
�25 0.17530 1.08561 1.30273 1.62841 2.17122 355.633 4053.35
�50 0.23607 1.13423 1.36108 1.70135 2.26847 361.050 4051.20

h1 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.35
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.05
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.45
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.15

h2 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.65
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.20
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.30
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4053.85

h3 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.65
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.20
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.30
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4053.85

he 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.35
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.05
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.45
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.15

r1 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.35
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.05
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.45
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.15

r2 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.65
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.20
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.30
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4053.85

r3 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.65
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.20
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.30
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4053.85

re 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.35
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4055.05
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.45
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4054.15

b0 50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 5554.75
25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 4879.75
�25 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 3304.75
�50 0.13902 1.05722 1.26866 1.58583 2.11444 352.085 2554.75

b1 50 0.27285 1.22782 1.47338 1.84173 2.45564 399.999 4249.95
25 0.24339 1.18860 1.42632 1.78290 2.37720 389.797 4155.85
�25 0.02653 0.92959 1.11551 1.39439 1.85919 309.953 3941.46
�50 0.00000 0.90167 1.08200 1.35251 1.80334 300.000 3816.91

b2 50 0.00000 0.90167 1.08200 1.35251 1.80334 300.000 4291.91
25 0.03020 0.93352 1.12023 1.40028 1.86705 311.332 4178.67
�25 0.27285 1.22782 1.47338 1.84173 2.45564 399.999 3912.45
�50 0.27285 1.22782 1.47338 1.84173 2.45564 399.999 3732.45
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LPn � lim
pe!p�n

LðpeÞ

¼ 1
2

he �
Pn
i¼1

hi

� �
t�2n �

ðhe þ sÞD2

2ðpn � DÞ2
t�20 þ b2 �

b1

p2
n

� �
pnt�n: ð21Þ
LPn can be expressed whether ACðpejt�0; t�nÞ still decreases as
pe ! p�n . Then we have the following result:

Theorem 1. For any given ðt�0; t�nÞ,
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(a) if LPn P 0, then the solution p�e 2 ðD; pnÞ which minimizes
ACðpejt�0; t�nÞ not only exists but also is unique,

(b) if LPn < 0, then the optimal value of pe is p�e ! pn.
Proof 1. See the Appendix B. h

Summarizing the above results, we establish the following algo-
rithm to obtain the optimal solution of our problem.

Algorithm
Step 1: Start with j = 1 and pej ? pn.
Step 2: Put pej into Eq. (A5) to obtain the corresponding value of
tn, i.e., t0n.
Step 3: Put pej and t0n into Eq. (A6) to obtain the corresponding
value of t0, i.e., t00.
Step 4: Put t0n and t00 into Eq. (21) to obtain LPn.
Step 5: If LPn<0, let p�ej ! pn, then go to Step 8. Otherwise, go to
Step 6.
Step 6: Put t0n and t00 into Eq. (18), then solve the optimal pej+1.
Step 7: If the difference between pej and pej+1 is sufficiently
small, set p�e ¼ pejþ1, then go to Step 8. Otherwise, set j = j + 1
and go back to Step 2.
Step 8: Calculate the corresponding values of t�n; t

�
0; t
�
i , and T� by

Eqs. (A5), (A6), (1), and (2) respectively, where i = 1, 2, . . ., n � 1.

4. Numerical example and sensitivity analysis

To illustrate the results, we consider a two-stage assembly sys-
tem with three components processes (n = 3) in Stage 1 and single
assembly process in Stage 2. Some known parameters are given as
follows: k = $100/cycle, D = 300/unit time, s = $0.5/unit/unit time,
b0 = 10, b1 = 500, b2 = 0.005,

Component 1 process: p1 = 600 per unit time, h1 = $0.1 per unit
per unit time, h1 = 0.04, r1 = $0.1/unit.
Component 2 process: p2 = 500/unit time, h2 = $0.2/unit/unit
time, h2 = 0.03, r2 = $0.2/unit.
Component 3 process: p3 = 400/unit time, h3 = $0.3/unit/unit
time, h3 = 0.02, r3 = $0.3/unit.
Assembly process: he = $0.4/unit/unit time, he = 0.01, re = $0.4/
unit.

Then, applying the proposed algorithm, the iterations to find the
optimal replenishment policy are shown in Table 1. After 14 itera-
tions, we have p�e ¼ 352:085; t�0 ¼ 0:13902; t�3 ¼ 1:58583; t�1 ¼
1:05722; t�2 ¼ 1:26866, and T� ¼ 2:11444. Then, from Eq. (13), we
obtain ACðt�0; t�3; p�eÞ ¼ 4054:75. The three-dimensional total cost
per unit time graph as p�e ¼ 352:085 is shown in Fig. 3. Note that
we run the numerical results with distinct values of pe

¼ 310ð10Þ390. The numerical results indicate that ACðpejt�0; t�3Þ is
strictly concave in pe, as shown in Fig. 4. Consequently, we are sure
that the local minimum obtained here indeed the global minimum
solution.

Now, this numerical example is considered to study the effects
of changes in the system parameters h1, h2, h3, he, s, h1, h2, h3, he, r1,
r2, r3, re, b0, b1, and b2 on the optimal values of t�0; t

�
1; t
�
2; t
�
3; T

�; p�e , and
ACðt�0; t�3; p�eÞ. The sensitivity analysis is performed by changing
each of the major parameters by +50%, +25%, �25%, and �50%, tak-
ing one parameter at a time and keeping the remaining parameters
unchanged. The results are shown in Table 2.

On the basis of the results of Table 2, the following observations
can be made:
(1) When the values of parameters h1, h2, h3, and he increase,
t�1; t

�
2; t
�
3, and T� decrease but ACðt�0; t�3; p�eÞ increases. It implies

that if the holding cost per unit per unit time increases, one
should reduce the production run time to avoid unnecessary
inventory. However, when the value of h3 exceeds some
limit value (i.e., h3 > 0.357), the production run time and
cycle time start to increase for retarding the growth of the
holding cost.

(2) As the shortage cost per unit per unit time, s,
increases, ACðt�0; t�3; p�eÞ increases while t�0 decreases. It
implies that one should focus on the length of the period
during which shortage is allowed for reducing the shortage
quantity.

(3) When the values of parameters h1, h2, h3, he, r1, r2, r3, re, and
b0 increase, t�0; t

�
1; t
�
2; t
�
3; T

�, and p�e are still fixed but the min-
imum total cost per unit time ACðt�0; t�3; p�eÞ increases. If these
costs and the defective rates could be reduced effectively,
the total cost per unit time will be improved.

(4) With increase in the value of parameter b1, ACðt�0; t�3; p�eÞ
increases. Therefore, in order to decrease minimum total
cost per unit time, one should decrease the labor cost per
unit time (i.e., wage or salary). Besides, p�e increases as b1

increases, which implies that the assembly rate should be
increased for retarding the growth of the labor cost. But,
when the value of b1 exceeds some limit value i.e.,
b1 > 660.846, the assembly rate stops at p�e ! p3 ¼ 400:000
due to the constraint of pe, D < pe < p3. Also, assembly rate
stops at p�e ¼ 300:000 when b1 < 347.816.

(5) With increase in the value of parameter b2, ACðt�0; t�3; p�eÞ
increases. Therefore, in order to decrease minimum total
cost per unit time, one should decrease the marginal cost
of assembly rate. In addition, p�e decreases as b2 increases,
which implies that the assembly rate should be decreased
for retarding the growth of the manpower cost. But, when
the value of b2 exceeds some limit value i.e., b2 > 0.0067,
the assembly rate stops at p�e ¼ 300:000 due to the con-
straint of pe. Also, assembly rate stops at p�e ! p3 ¼
400:000 when b2 > 0.0040.

5. Conclusion

In this paper, we amended the paper of Pearn et al. (2011)
with a view to making the model more relevant and applicable
in practice. We investigated a two-stage assembly system in
which the n required components are produced in Stage 1 (auto-
matic process) and the end products are assembled form n com-
ponents in Stage 2 (manual process). In addition, we assume that
the production (assembly) cost is a convex function of assembly
rate. Consequently, the production run time of all components
(t1, t2, . . ., tn), shortage time (t0), and assembly rate (pe) are the
decision variables for minimizing the total related cost per unit.
The proposed model can be adopted in inventory control of pro-
duction system such as automobile, semiconductor, TFT–LCD, and
food industries. The necessary and sufficient conditions of the
existence and uniqueness of the optimal solution are shown.
Next, we provided a simple algorithm to find the optimal solution
of (t0, tn, pe) under the constraint D < pe < pn. Furthermore, the
effects of the model parameters on the optimal solutions and
minimum total cost per unit time are investigated through a
numerical example.

The proposed model can be extended in several ways. For
instance, in real life, it may take a significant amount of time to
rework (disassembling, correcting and then reassembling) for the
seriously defective end products in the production assembly sys-
tem. Therefore, it would be interesting to relax Assumption (3),
and take the rework time into account when dealing with an
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imperfect assembly system. Additionally, the machine, manpower,
tools, and idle costs can also be considered to extend the proposed
model.
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Appendix A

From Eqs. (14)–(16), we can obtain that

t0 ¼
hepnðpe � DÞ
peDðhe þ sÞ tn; ðA1Þ

� kþ p2
nt2

n

2
Pn
i¼1

hi
1
pe
� 1

pi

� �� �

¼ speDt2
0

2ðpe � DÞ �
heDðpe � DÞ

2pe

pntn

D

� �2

� pet0

pe � D

� �2
" #

; ðA2Þ

and

p2
nt2

n

2pe
he �

Pn
i¼1

hi

� �
� ðhe þ sÞD2t2

0

2ðpe � DÞ þ b2 �
b1

p2
e

� �
pntn ¼ 0: ðA3Þ

From the above results, t0 is a function of tn. Given any
D < pe < pn, we substitute t0 in Eq. (A1) into Eq. (A2) and obtain

Gt2
n � k ¼ 0; ðA4Þ

where

G ¼ p2
n

2
Pn
i¼1

hi
1
pe
� 1

pi

� �� �
þ shep2

nðpe � DÞ
2peDðhe þ sÞ > 0:

Solving Eq. (A4), we can obtain the optimal value of tn that is

t�n ¼
ffiffiffiffiffiffiffiffiffi
k=G

q
: ðA5Þ

Then, we substitute t�n in Eq. (A5) into Eq. (A1), the correspond-
ing t�0 is determined, i.e.,

t�0 ¼
hepnðpe � DÞ
peDðhe þ sÞ

ffiffiffiffiffiffiffiffiffi
k=G

q
: ðA6Þ

Furthermore, we also calculate that

@2ACðt0; tnjpeÞ
@t2

0

jðt0 ;tnÞ¼ðt�0 ;t
�
nÞ
¼ peD2ðhe þ sÞ

pnt�nðpe � DÞ > 0;

@2ACðt0; tnjpeÞ
@t2

n

jðt0 ;tnÞ¼ðt�0 ;t
�
nÞ ¼

pnD
t�n

heðpe � DÞ
peD

þ
Pn
i¼1

hi
1
pe
� 1

pi

� �� �
> 0;

and

@2ACðt0; tnjpeÞ
@p2

e
jðt0 ;tnÞ¼ðt�0 ;t

�
nÞ ¼
�heD

t�n
:

Therefore, the determinant of the Hessian matrix at the station-
ary point ðt�0; t�nÞ is

detðHÞ ¼ peD3ðhe þ sÞ
t�2n ðpe � DÞ

heðpe � DÞ
peD

þ
Pn
i¼1

hi
1
pe
� 1

pi

� �� �
� h2

e D2

t�2n

¼ hesD2

t�2n

þ peD3ðhe þ sÞ
t�2n ðpe � DÞ

Pn
i¼1

hi
1
pe
� 1

pi

� �
> 0:

Consequently, the stationary point ðt�0; t�nÞ is the optimal solu-
tion for given pe e (D, pn).
Appendix B

(a) If LPn P 0, we can find a unique solution p�e 2 ðD; pnÞ such
that Eq. (18) is hold by the Intermediate Value Theorem.
After assembling Eq. (18), the second-order derivative of
ACðpejt�0; t�nÞ with respect to pe becomes

( )

d2ACðpejt�0; t�nÞ

dp2
e

¼ D
pepnt�n

2b2pnt�n þ
ðhe þ sÞD3

ðpe � DÞ3
t�20 > 0:
Consequently, there exists a unique optimal assembly rate

p�e 2 ðD; pnÞ which minimizes ACðpejt�0; t�nÞ .
(b) If LPn < 0, then it can be obtained that L(pe) < 0 for
p�e 2 ðD; pnÞ. Therefore, from Eq. (17), we obtain that
dACðpe jt�0 ;t

�
nÞ

dpe
¼ DLðpeÞ

pnt�n
< 0 for p�e 2 ðD; pnÞ, which implies that a

large value of pe causes a lower value of ACðpejt�0; t�nÞ. Hence
the minimum value of ACðpejt�0; t�nÞ occurs at the point
p�e ! pn.
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