An economic manufacturing quantity model for a two-stage assembly system with imperfect processes and variable production rate ${ }^{\text {is }}$

Horng-Jinh Chang ${ }^{\text {a }}$, Rung-Hung Su ${ }^{\text {b }}$, Chih-Te Yang ${ }^{\text {c,*, }}$, Ming-Wei Weng ${ }^{\text {d }}$
${ }^{\text {a }}$ Graduate Institute of Management Sciences, Tamkang University, Tamsui, New Taipei, Taiwan
${ }^{\text {b }}$ Gerontechnology Research Center, Yuan Ze University, Taoyuan, Taiwan
${ }^{\text {c }}$ Department of Industrial Management, Ching Yun University, Taoyuan, Taiwan
${ }^{\text {d }}$ Center for Business Education Innovation, Feng Chia University, Taichung, Taiwan

A R T I CLE INFO

Article history:

Received 5 August 2010
Received in revised form 2 November 2011
Accepted 21 February 2012
Available online 10 March 2012

Keywords:

Inventory
Completely backlogged
Two-stage assembly system
Variable assembly rate

Abstract

This article considers a two-stage assembly system with imperfect processes. The former is an automatic stage in which the required components are manufactured. The latter is a manual stage which deals with taking the components to assemble the end product. In addition, the component processes are independent of each other, and the assembly rate is variable. Shortage is allowed, and the unsatisfied demand is completely backlogged. Then, we formulate the proposed problem as a cost minimization model where the assembly rate and the production run time of each component process are decision variables. An algorithm for the computations of the optimal solutions under the constraint of assembly rate is also provided. Finally, a numerical example and sensitivity analysis are carried out to illustrate the model.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades of research on economic manufacturing quantity (EMQ) model, the scads of issues have appeared. The traditional EMQ model is developed based on the single item and simple (single-stage) production system. For example, Jamal, Sarker, and Mondal (2004) dealt with the optimum batch quantity in a single-stage production system in which rework is done under two different operational policies to minimize the total system cost. Cárdenas-Barrón (2007) presented the correct solutions to the two numerical examples presented by Jamal et al. (2004). Furthermore, Cárdenas-Barrón (2008) considered a simple derivation of the two inventory policies proposed by Jamal et al. (2004). In 2009, Cárdenas-Barrón (2009b) further developed an economic production quantity (EPQ) model with planned backorders for a single product at a single-stage manufacturing system that generates imperfect quality products, and all these defective products are reworked in the same cycle.

However, in the present industrial settings, the end product is manufactured through multi-stage production system, in which the raw material is transformed into the end product in a series of processing stages such as forming, cutting, grinding, assembling,

[^0]polishing, and painting. Besides, since the production rates of all stages are not exactly the same, the semi-finished products are going to be accumulated between the stages under no starveling stage. Therefore, the holding cost of semi-finished products should be taken into account. Note that the two-stage system can be also used to approximate more complex multi-stage system. Early theorization of single product in a multi-stage perfect system is discussed by Taha and Skeith (1970). After, several authors have developed various extensions for the multi-stage system in the literatures. Szendrovits (1975) considered that the manufacturing cycle time as a function of the lot size in the EPQ model. Kumar and Vrat (1979) developed a stochastic model to determine the optimum level of inventory at every stage of production. Karimi (1992) determined the optimal stationary, cyclic schedules for minimizing the sum of set-up and inventory costs. Kim (1999) developed various lot sizing and inventory batching (i.e., opera-tion-unit batching (OUB) and unit-unit batching (UUB)) models under different system characteristics and lot sizing and inventory policies.

Assembly process is a practical production system frequently occurred in the manufacturing industry, and is one of the twostage (multi-stage) production systems. The former stage is to manufacture required components. In the latter stage, the end product is assembled from these components. Some researchers have studied the multi-stage assembly system. Crowston, Wagner, and Williams (1973) considered the optimal lot size problem for multi-stage assembly systems where each facility may have many predecessors but only a single successor. Schwarz and Schrage
(1975) proposed optimal and near optimal polices for multi-stage assembly systems under continuous review with constant demand over an infinite planning horizon. Schmidt and Nahmias (1985) considered that an end product is assembled from two components. Besides, the end product has final demand, which is assumed to be random. Dellaert, De Kok, and Wang (2000) analyzed two alternative strategies for the production control of an assembly system. Dellaert and De Kok (2004) studied a simple multi-stage assembly system, with stationary stochastic demand for a single final product that is made-to-stock.

In many production systems, the defective good is a realistic phenomenon due to deterioration of machine. However, all researches above assumed that the production facility is perfect and all products are good quality. In fact, the product quality is not always perfect and usually depends on the state of the production process. Some studies have pointed out that the unreliable production facility in the multi-stage production system. Chakraborty and Rao (1988) determined the optimal batch quantity in a multi-stage production system considering the rework of defective items. Giri, Yun, and Dohi (2005a) considered an unreliable two-stage lot sizing problem in which the failure-prone machine at the first stage produces semi-finished products in batches that are transferred continuously to the next stage where the failure-free machine produces the finished products in batches. Darwish and Ben-Daya (2007) investigated the effect of imperfect production processes involving variable the frequency of preventive maintenance. Sarker, Jamal, and Mondal (2008) developed models for an optimal batch quantity for a multi-stage production system that allows rework of defective items under two operational policies reworking defectives within the same cycle and after N cycles. Cárdenas-Barrón (2009a) further corrected the mathematical expressions presented by Sarker et al. (2008). Pearn, Su , Weng, and Hsu (2011) considered a two-stage production system, in which the former and the latter are automatic process and manual process, respectively. Besides, the capital investment in process quality is taken into account. Unfortunately, they did not consider for the multi-stage assembly system.

On the other hands, most researches usually assume that the production rate is predetermined and inflexible. In real life, the manufacturers often shift the production rate for achieving the cost-effective production. Recently, some articles developed various unit production costs which are the convex functions of the production rate, and the production rate is regarded as a decision variable (Eiamkanchanalai \& Banerjee, 1999; Giri, Yun, \& Dohi, 2005b; Khouja \& Mehrez, 1994; Larsen, 1997). Besides, some authors also proposed various settings for the production rate, for example, the production rate varies with time (Balkhi \& Benldlerouf, 1996), or on-hand inventory level (Bhunia \& Maiti, 1997; Su \& Lin, 2001). Ben-Daya, Hariga, and Khursheed (2008) further considered the shifting production rate in EPQ model.

In this paper, we probe an assembly process into the two-stage model proposed by Pearn et al. (2011). The former is an automatic stage in which the required components are manufactured. The component processes start at the same time and are independent each other. The latter is a manual stage which deals with assembling the components to the end product. To the best of our knowledge, production rate of automatic process is always higher than manual process. Under this situation, the components are going to be accumulated between two stages. Most of manufacturing industries correspond to automatic-manual (two-stage) assembly system such as computer, semiconductor, TFT-LCD, automobile, cell phone, and food industries. Besides, the production rates of the components are different, and the assembly rate is variable and can be controlled by modulating manpower. Note that Pearn et al. (2011) considered that the production rates in two stages are invariable. Then, we formulate the proposed problem as a cost
minimization model where the assembly rate and the production run time of each component process are decision variables. We also prove that the optimal solution not only exists but also is unique. Finally, a numerical example is presented to demonstrate the theoretical results and the solution procedure, and then the sensitivity analysis of the optimal solution with respect to major parameters is also carried out.

2. Notation and assumptions

2.1. Notation

To develop the mathematical model of the two-stage assembly system with imperfect processes, the notation adopted in this paper includes as follows.

System parameters

n Number of required components in automatic stage
p_{i} Production rate of the component i in units per unit time, where $i=1,2, \ldots, n$, and $p_{1}>p_{2}>\ldots>p_{n}$
D Demand rate in units per unit time
k Setup cost per cycle
$h_{i} \quad$ Holding cost for a component i per unit time, where
$i=1,2, \ldots, n$
$h_{e} \quad$ Holding cost for an end product per unit time
s Shortage cost for an end product per unit time
θ_{i} Defective rate of component i in automatic stage, where
$i=1,2, \ldots, n$
θ_{e} Defective rate of end product in manual stage
r_{i} Rework cost for a defective component i, where
$i=1,2, \ldots, n$
r_{e} Rework cost for a defective end product
$\mathrm{t}_{\text {id }}$ Time period when inventory of the component i depletes, where $i=1,2, \ldots, n$
$\mathrm{t}_{e d}$ Time period when inventory of the end product depletes
$t_{b} \quad$ Time period when backorder is replenished
T Length of cycle time
$Z_{i} \quad$ Maximum inventory level of the component i, where $i=1,2, \ldots, n$
$Z_{e} \quad$ Maximum inventory level of the end product
$Z_{b} \quad$ Maximum backorder level of the end product

Decision variables

p_{e} Assembly rate of the end product in units per unit time
t_{0} Time period when there is no production and shortage occurs
$t_{i} \quad$ Production run time of the component i, where $i=1,2, \ldots, n$

2.2. Assumptions

In addition, the following assumptions are used throughout this paper:
(1) The production cycle repeats infinitely.
(2) The production system is separated into two stages, automatic stage (Stage 1) and manual stage (Stage 2). This system is depicted in Fig. 1. From Fig. 1, the required components are manufactured by each machine in Stage 1. Then these components are transported from each warehouse to the assembly line. Finally, the end products are assembled from required components in Stage 2. Note that each process work has own production line and machines. Therefore, the production processes of two stages are independent each other. In addition, all of components and end

Fig. 1. Two-stage assembly system.
products must be inspected for finding the defective items before putting these into warehouses.
(3) For the sake of simplicity, we assume that the process quality of two stages is independent, and the inspection time is so short that it can be neglected. Moreover, the rework time of defective items is neglected in this paper.
(4) The production rate of the former stage must always be greater than the latter stage (or demand rate) due to the basic assumption of the EMQ model. Therefore, in order to avoid starvation in that stage due to lack of input from the previous stage, the minimal production rate, assembly rate, and demand rate should satisfy the condition $p_{n}>p_{e}>D$.
(5) Based on Giri et al. (2005b), the production cost for an end product consists of the following three elements: (a) the material and manufacturing costs of required components in Stage $1, \beta_{0} \geqslant 0$; (b) the labor cost for taking the components to assemble an end product in Stage $2, \beta_{1} / p_{e}$, where $\beta_{1} \geqslant 0$ is the labor cost per unit time; (c) the manpower cost for increasing assembly rate in Stage $2, \beta_{2} p_{e}$, where $\beta_{2} \geqslant 0$ is the marginal cost of assembly rate.

3. Mathematical formulation

Under the notation and assumptions in the previous section, the graphic representation of inventory level can be shown as in Fig. 2. Referring to Fig. 2, we have the following results:
I. The production run time of the component i and the cycle time:

Since the model is completely backlogged and perfect rework process, the production quantities of all components are equal to the demand in a cycle (i.e, $p_{i} t_{i}=p_{n} t_{n}=D T$). Therefore, t_{i} and T can be expressed as
$t_{i}=\frac{p_{n} t_{n}}{p_{i}}$,
where, $i=1,2, \ldots, n$, and
$T=\frac{p_{n} t_{n}}{D}$,
respectively.
II. The maximum inventory level of the component i and the maximum backorder level:
$Z_{i}=\left(p_{i}-p_{e}\right) t_{i}$,
where $i=1,2, \ldots, n$, and
$Z_{b}=D t_{0}=\left(p_{e}-D\right) t_{b}$.
III. The time period when inventory of the component i depletes:
$t_{i d}=\frac{Z_{i}}{p_{e}}=\frac{\left(p_{i}-p_{e}\right) t_{i}}{p_{e}}=\left(\frac{p_{i}}{p_{e}}-1\right) t_{i}$,
where $i=1,2, \ldots, n$.
IV. The maximum inventory level of the end product:

$$
\begin{align*}
Z_{e} & =\left(p_{e}-D\right)\left(t_{n}+t_{n d}-t_{b}\right) \\
& =\left(p_{e}-D\right)\left[t_{n}+\left(\frac{p_{n}}{p_{e}}-1\right) t_{n}-\frac{Z_{b}}{p_{e}-D}\right] \quad(\text { from Eq.(4)) } \\
& =\left(p_{e}-D\right)\left(\frac{p_{n}}{p_{e}} t_{n}-\frac{D}{p_{e}-D} t_{0}\right) \tag{6}
\end{align*}
$$

Based on the above results, the total cost per cycle consists of the following six elements:

1. Setup cost:

The setup cost per cycle (denoted by C_{S}) is
$C_{s}=k$.
2. Holding cost of end product:

Fig. 2. The graph of inventory level during time period $[0, T]$.

The holding cost of end product per cycle (denoted by $H C_{e}$) is given by

$$
\begin{align*}
H C_{e} & =\frac{h_{e} Z_{e}\left(T-t_{0}-t_{b}\right)}{2} \\
& =\frac{h_{e} D\left(p_{e}-D\right)}{2 p_{e}}\left(\frac{p_{n}}{D} t_{n}-\frac{p_{e} t_{0}}{p_{e}-D}\right)^{2} .(\text { from Eqs.(1),(2), and(6)) } \tag{8}
\end{align*}
$$

3. Holding cost of all components:

The holding cost of all components per cycle (denoted by $H C_{c}$) is given by

$$
\begin{align*}
H C_{c} & =\sum_{i=1}^{n} \frac{h_{i} Z_{i}\left(t_{i}+t_{i d}\right)}{2} \\
& =\frac{p_{n}^{2} t_{n}^{2}}{2}\left[\sum_{i=1}^{n} h_{i}\left(\frac{1}{p_{e}}-\frac{1}{p_{i}}\right)\right] . \quad(\text { from Eqs. }(1),(3), \text { and }(5)) \tag{9}
\end{align*}
$$

4. Shortage cost:

The shortage cost per cycle (denoted by $S C$) is given by
$S C=\frac{s Z_{b}\left(t_{0}+t_{b}\right)}{2}=\frac{s p_{e} D}{2\left(p_{e}-D\right)} t_{0}^{2} \quad$ (from Eq.(4))
5. Rework costs:

The rework costs for defective end product and all components per cycle (denoted by $R C$) is given by
$R C=\left(r_{e} \theta_{e}+\sum_{i=1}^{n} r_{i} \theta_{i}\right) D T=\left(r_{e} \theta_{e}+\sum_{i=1}^{n} r_{i} \theta_{i}\right) p_{n} t_{n} . \quad($ from Eq. $(2))$
6. Production cost:

Based on Giri et al. (2005b), the production cost per cycle (denoted by $P C$) is

$$
\begin{equation*}
P C=\left(\beta_{0}+\frac{\beta_{1}}{p_{e}}+\beta_{2} p_{e}\right) p_{n} t_{n} \tag{12}
\end{equation*}
$$

Therefore, the total cost per unit time (denoted by $A C\left(t_{0}, t_{n}, p_{e}\right)$) is given by

$$
\begin{align*}
A C\left(t_{0}, t_{n}, p_{e}\right)= & \frac{1}{T} \times\left\{H C_{e}+H C_{c}+S C+R C+P C+C_{s}\right\} \\
= & \frac{D}{p_{n} t_{n}} \times\left\{\frac{p_{n}^{2} t_{n}^{2}}{2}\left[\sum_{i=1}^{n} h_{i}\left(\frac{1}{p_{e}}-\frac{1}{p_{i}}\right)\right]\right. \\
& +\frac{h_{e} D\left(p_{e}-D\right)\left(\frac{p_{n} t_{n}}{D}-\frac{p_{e} t_{0}}{p_{e}-D}\right)^{2}}{2 p_{e}}+\frac{s p_{e} D t_{0}^{2}}{2\left(p_{e}-D\right)} \\
& \left.+\left[\left(r_{e} \theta_{e}+\sum_{i=1}^{n} r_{i} \theta_{i}\right)+\left(\beta_{0}+\frac{\beta_{1}}{p_{e}}+\beta_{2} p_{e}\right)\right] p_{n} t_{n}+k\right\} . \tag{13}
\end{align*}
$$

Remark 1. If the end product is assembled from only one required component, i.e., $n=1$, and the assembly rate is invariable, i.e., $\beta_{0}=\beta_{1}=\beta_{2}=0$, the objective function will be reduced to Pearn et al. (2011) without capital investment in process quality. The decision variables are production run time of all components, $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, shortage run time $\left(t_{0}\right)$, and assembly rate $\left(p_{e}\right)$, and these variables are independent each other. Note that t_{1}, t_{2}, \ldots, and t_{n-1} are the function of t_{n} from Eq. (1). Therefore, our problem is to minimize the total cost per unit time, $A C\left(t_{0}, t_{n}, p_{e}\right)$, by simultaneously optimizing t_{0}, t_{n}, and p_{e}, constrained on $t_{0}>0, t_{n}>0$, and $D<p_{e}<p_{n}$.

The detail solution procedure is shown as follows. The necessary conditions for the total cost per unit time $A C\left(t_{0}, t_{n}, p_{e}\right)$ in Eq. (13) to be minimized are $\partial A C\left(t_{0}, t_{n}, p_{e}\right) / \partial t_{0}=0, \partial$ $A C\left(t_{0}, t_{n}, p_{e}\right) / \partial t_{n}=0$, and $\partial A C\left(t_{0}, t_{n}, p_{e}\right) / \partial p_{e}=0$, simultaneously. That is,
$\frac{\partial A C\left(t_{0}, t_{n}, p_{e}\right)}{\partial t_{0}}=\frac{D}{p_{n} t_{n}}\left[-h_{e} p_{n} t_{n}+\frac{p_{e} D\left(h_{e}+s\right) t_{0}}{p_{e}-D}\right]=0$,

Table 1
Iterations to find the optimal solutions.

j	$p_{e j}$	t_{0}^{*}	t_{3}^{*}	LP_{n}	$p_{e j+1}$	$p_{e j+1}-p_{e j}$
1	400.000	0.27285	1.84173	0.74059	370.556	-29.444
2	370.556	0.18942	1.67872	0.83192	359.490	-11.066
3	359.49	0.15909	1.62231	0.85104	355.104	-4.386
4	355.104	0.14718	1.60058	0.85652	353.324	-1.780
5	353.324	0.14237	1.59186	0.85841	352.595	-0.729
6	352.595	0.14040	1.58831	0.85913	352.295	-0.300
7	352.295	0.13959	1.58685	0.85942	352.171	-0.124
8	352.171	0.13925	1.58625	0.85953	352.120	-0.051
9	352.12	0.13912	1.58600	0.85958	352.099	-0.021
10	352.099	0.13906	1.58590	0.85960	352.091	-0.008
11	352.091	0.13904	1.58586	0.85961	352.087	-0.004
12	352.087	0.13903	1.58584	0.85961	352.086	-0.001
13	352.086	0.13902	1.58583	0.85961	352.085	-0.001
14	352.085	0.13902	1.58583	0.85961	352.085	0.000

Sol: $p_{e}^{*}=352.085, t_{0}^{*}=0.13902, t_{3}^{*}=1.58583, t_{1}^{*}=1.05722, t_{2}^{*}=1.26866$

$$
\begin{align*}
\frac{\partial A C\left(t_{0}, t_{n}, p_{e}\right)}{\partial t_{n}}= & \frac{D}{p_{n} t_{n}^{2}}\left\{\frac{p_{n}^{2} t_{n}^{2}}{2}\left[\sum_{i=1}^{n} h_{i}\left(\frac{1}{p_{e}}-\frac{1}{p_{i}}\right)\right]\right. \\
& -\frac{s p_{e} D t_{0}^{2}}{2\left(p_{e}-D\right)}-k+\frac{h_{e} D\left(p_{e}-D\right)}{2 p_{e}} \\
& \left.\times\left[\left(\frac{p_{n} t_{n}}{D}\right)^{2}-\left(\frac{p_{e} t_{0}}{p_{e}-D}\right)^{2}\right]\right\}=0 \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial A C\left(t_{0}, t_{n}, p_{e}\right)}{\partial p_{e}}= & \frac{D}{p_{n} t_{n}}\left\{\frac{p_{n}^{2} t_{n}^{2}}{2 p_{e}^{2}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)\right. \\
& \left.-\frac{\left(h_{e}+s\right) D^{2} t_{0}^{2}}{2\left(p_{e}-D\right)^{2}}+\left(\beta_{2}-\frac{\beta_{1}}{p_{e}^{2}}\right) p_{n} t_{n}\right\}=0 \tag{16}
\end{align*}
$$

It is not easy to find the closed-form solution of $\left(t_{0}, t_{n}, p_{e}\right)$ from Eqs. (14)-(16). Besides, due to the high-power expression of the exponential function, the convex property of the total cost per unit time cannot be proved by using the Hessian matrix. Instead, we solve the problem by using the following search procedure. First, we prove that for any given $p_{e} \in\left(D, p_{n}\right)$, the optimal solution of $\left(t_{0}, t_{n}\right)$ (say $\left(t_{0}^{*}, t_{n}^{*}\right)$) not only exists but also is unique (the proof is shown as in Appendix A).

Next, we study the optimal assembly rate also exists and is unique under the solution $\left(t_{0}^{*}, t_{n}^{*}\right)$. For given t_{0}^{*} and t_{n}^{*}, the first-order necessary condition for $A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$ to be minimum is

$$
\begin{align*}
\frac{\mathrm{d} A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)}{\mathrm{d} p_{e}}= & \frac{D}{p_{n} t_{n}^{*}}\left\{\frac{p_{n}^{2} t_{n}^{* 2}}{2 p_{e}^{2}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)-\frac{\left(h_{e}+s\right) D^{2} t_{0}^{* 2}}{2\left(p_{e}-D\right)^{2}}\right. \\
& \left.+\left(\beta_{2}-\frac{\beta_{1}}{p_{e}^{2}}\right) p_{n} t_{n}^{*}\right\}=0 \tag{17}
\end{align*}
$$

From Eq. (17), we have
$\frac{p_{n}^{2} t_{n}^{* 2}}{2 p_{e}^{2}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)-\frac{\left(h_{e}+s\right) D^{2} t_{0}^{* 2}}{2\left(p_{e}-D\right)^{2}}+\left(\beta_{2}-\frac{\beta_{1}}{p_{e}^{2}}\right) p_{n} t_{n}^{*}=0$.
Let $L\left(p_{e}\right)$ denote the left hand side of Eq. (18), i.e.,
$L\left(p_{e}\right)=\frac{p_{n}^{2} t_{n}^{* 2}}{2 p_{e}^{2}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)-\frac{\left(h_{e}+s\right) D^{2} t_{0}^{* 2}}{2\left(p_{e}-D\right)^{2}}+\left(\beta_{2}-\frac{\beta_{1}}{p_{e}^{2}}\right) p_{n} t_{n}^{*}$.
We first rewrite Eq. (18) and have
$\frac{p_{n}^{2} t_{n}^{* 2}}{2 p_{e}^{2}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)-\frac{\left(h_{e}+s\right) D^{2} t_{0}^{* 2}}{2\left(p_{e}-D\right)^{2}}-\frac{\beta_{1} p_{n} t_{n}^{*}}{p_{e}^{2}}=-\beta_{2} p_{n} t_{n}^{*}$.
Because the right hand side $-\beta_{2} p_{n} t_{n}^{*}<0$, then we have $\Delta<0$, where
$A C\left(t_{0}, t_{3} \mid p_{e}=352.085\right)$

Fig. 3. The total cost per unit time, $A C\left(t_{0}, t_{3} \mid p_{e}^{*}=352.085\right)$.

Fig. 4. Graphical representation of $A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$.
$\Delta \equiv \frac{p_{n}^{2} t_{n}^{* 2}}{2 p_{e}^{2}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)-\frac{(h+s) D^{2} t_{0}^{* 2}}{2\left(p_{e}-D\right)^{2}}-\frac{\beta_{1} p_{n} t_{n}^{*}}{p_{e}^{2}}$,
Next, taking the first-order derivative of $L\left(p_{e}\right)$ with respect to p_{e}, we obtain

$$
\begin{aligned}
\frac{\mathrm{d} L\left(p_{e}\right)}{\mathrm{d} p_{e}} & =-\frac{p_{n}^{2} t_{n}^{* 2}}{p_{e}^{3}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)+\frac{\left(h_{e}+s\right) D^{2} t_{0}^{* 2}}{\left(p_{e}-D\right)^{3}}+\frac{2 \beta_{1} p_{n} t_{n}^{*}}{p_{e}^{3}} \\
& =-\frac{2}{p_{e}}\left\{\frac{p_{n}^{2} n_{n}^{* 2}}{2 p_{e}^{2}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)-\frac{\left(h_{e}+s\right) D^{2} p_{e} t_{0}^{* 2}}{2\left(p_{e}-D\right)^{3}}-\frac{\beta_{1} p_{n} t_{n}^{*}}{p_{e}^{2}}\right\} \\
& =-\frac{2}{p_{e}}\left\{\frac{p_{n}^{2} t_{n}^{* 2}}{2 p_{e}^{2}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)-\frac{\left(h_{e}+s\right) D^{2} t_{0}^{* 2}}{2\left(p_{e}-D\right)^{2}} \times\left(1+\frac{D}{p_{e}-D}\right)-\frac{\beta_{1} p_{n} t_{n}^{*}}{p_{e}^{2}}\right\} \\
& =-\frac{2}{p_{e}} \Delta+\frac{\left(h_{e}+s\right) D^{3} t_{0}^{* 2}}{p_{e}\left(p_{e}-D\right)^{3}}>0 .
\end{aligned}
$$

Therefore, $L\left(p_{e}\right)$ is a strictly increasing function of $p_{e} \in\left(D, p_{n}\right)$. Furthermore, calculating the following limit:
$\lim _{p_{e} \rightarrow D^{+}} L\left(p_{e}\right)=-\infty<0$.
According to the above, it is clear that when the stock of end product increases, the total cost per unit time under the solution $\left(t_{0}^{*}, t_{n}^{*}\right), A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$, decreases. It implies that although the holding cost of end product increases, the holding cost of all components decreases. Next, we also calculate the following limit and define as $L P_{n}$.

Table 2
Effect of changes in various parameters of the inventory model.

Parameter	\% Change	Optimal solutions						
		t_{0}^{*}	t_{1}^{*}	t_{2}^{*}	t_{3}^{*}	T^{*}	p_{e}^{*}	$A C$
h_{1}	50	0.13842	1.00830	1.20996	1.51246	2.01661	354.795	4060.15
	25	0.13870	1.03170	1.23804	1.54755	2.06340	353.458	4057.49
	-25	0.13938	1.08520	1.30224	1.62779	2.17039	350.671	4051.91
	-50	0.13980	1.11605	1.33926	1.67407	2.23209	349.210	4048.96
h_{2}	50	0.14535	0.99950	1.19940	1.49925	1.99900	358.681	4062.27
	25	0.14228	1.02616	1.23140	1.53925	2.05233	355.441	4058.62
	-25	0.13551	1.09377	1.31252	1.64065	2.18753	348.584	4050.62
	-50	0.13162	1.13737	1.36485	1.70606	2.27474	344.900	4046.18
h_{3}	50	0.16920	1.06165	1.27398	1.59247	2.12330	365.539	4058.85
	25	0.15353	1.05533	1.26640	1.58300	2.11066	358.706	4056.99
	-25	0.12497	1.06712	1.28055	1.60069	2.13425	345.523	4052.10
	-50	0.11073	1.08580	1.30296	1.62870	2.17160	338.879	4049.05
h_{e}	50	0.14848	1.01684	1.22021	1.52526	2.03368	346.363	4056.96
	25	0.14479	1.03371	1.24045	1.55056	2.06741	348.867	4056.00
	-25	0.12967	1.09224	1.31068	1.63836	2.18447	356.417	4053.04
	-50	0.11362	1.15021	1.38026	1.72532	2.30043	362.696	4050.55
s	50	0.09778	1.02540	1.23048	1.53810	2.05080	347.656	4056.47
	25	0.11492	1.03858	1.24629	1.55786	2.07715	349.557	4055.74
	-25	0.17530	1.08561	1.30273	1.62841	2.17122	355.633	4053.35
	-50	0.23607	1.13423	1.36108	1.70135	2.26847	361.050	4051.20
θ_{1}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.35
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.05
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.45
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.15
θ_{2}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.65
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.20
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.30
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4053.85
θ_{3}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.65
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.20
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.30
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4053.85
θ_{e}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.35
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.05
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.45
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.15
r_{1}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.35
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.05
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.45
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.15
r_{2}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.65
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.20
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.30
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4053.85
r_{3}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.65
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.20
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.30
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4053.85
r_{e}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.35
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4055.05
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.45
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4054.15
β_{0}	50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	5554.75
	25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	4879.75
	-25	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	3304.75
	-50	0.13902	1.05722	1.26866	1.58583	2.11444	352.085	2554.75
β_{1}	50	0.27285	1.22782	1.47338	1.84173	2.45564	399.999	4249.95
	25	0.24339	1.18860	1.42632	1.78290	2.37720	389.797	4155.85
	-25	0.02653	0.92959	1.11551	1.39439	1.85919	309.953	3941.46
	-50	0.00000	0.90167	1.08200	1.35251	1.80334	300.000	3816.91
β_{2}	50	0.00000	0.90167	1.08200	1.35251	1.80334	300.000	4291.91
	25	0.03020	0.93352	1.12023	1.40028	1.86705	311.332	4178.67
	-25	0.27285	1.22782	1.47338	1.84173	2.45564	399.999	3912.45
	-50	0.27285	1.22782	1.47338	1.84173	2.45564	399.999	3732.45

$$
\begin{align*}
L P_{n} & \equiv \lim _{p_{e} \rightarrow p_{n}^{-}} L\left(p_{e}\right) \\
& =\frac{1}{2}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right) t_{n}^{* 2}-\frac{\left(h_{e}+s\right) D^{2}}{2\left(p_{n}-D\right)^{2}} t_{0}^{* 2}+\left(\beta_{2}-\frac{\beta_{1}}{p_{n}^{2}}\right) p_{n} t_{n}^{*} . \tag{21}
\end{align*}
$$

$L P_{n}$ can be expressed whether $A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$ still decreases as $p_{e} \rightarrow p_{n}^{-}$. Then we have the following result:

Theorem 1. For any given $\left(t_{0}^{*}, t_{n}^{*}\right)$,
(a) if $L P_{n} \geqslant 0$, then the solution $p_{e}^{*} \in\left(D, p_{n}\right)$ which minimizes $A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$ not only exists but also is unique,
(b) if $L P_{n}<0$, then the optimal value of p_{e} is $p_{e}^{*} \rightarrow p_{n}$.

Proof 1. See the Appendix B.

Summarizing the above results, we establish the following algorithm to obtain the optimal solution of our problem.

Algorithm

Step 1: Start with $j=1$ and $p_{e j} \rightarrow p_{n}$.
Step 2: Put $p_{e j}$ into Eq. (A5) to obtain the corresponding value of t_{n}, i.e., t_{n}^{\prime}.
Step 3: Put $p_{e j}$ and t_{n}^{\prime} into Eq. (A6) to obtain the corresponding value of t_{0}, i.e., t_{0}^{\prime}.
Step 4: Put t_{n}^{\prime} and t_{0}^{\prime} into Eq. (21) to obtain $L P_{n}$.
Step 5: If $L P_{n}<0$, let $p_{e j}^{*} \rightarrow p_{n}$, then go to Step 8. Otherwise, go to Step 6.
Step 6: Put t_{n}^{\prime} and t_{0}^{\prime} into Eq. (18), then solve the optimal $p_{e j+1}$. Step 7: If the difference between $p_{e j}$ and $p_{e j+1}$ is sufficiently small, set $p_{e}^{*}=p_{e j+1}$, then go to Step 8. Otherwise, set $j=j+1$ and go back to Step 2.
Step 8: Calculate the corresponding values of $t_{n}^{*}, t_{0}^{*}, t_{i}^{*}$, and T^{*} by Eqs. (A5), (A6), (1), and (2) respectively, where $i=1,2, \ldots, n-1$.

4. Numerical example and sensitivity analysis

To illustrate the results, we consider a two-stage assembly system with three components processes ($n=3$) in Stage 1 and single assembly process in Stage 2 . Some known parameters are given as follows: $k=\$ 100 /$ cycle, $D=300 /$ unit time, $s=\$ 0.5 /$ unit/unit time, $\beta_{0}=10, \beta_{1}=500, \beta_{2}=0.005$,

Component 1 process: $p_{1}=600$ per unit time, $h_{1}=\$ 0.1$ per unit per unit time, $\theta_{1}=0.04, r_{1}=\$ 0.1 /$ unit.
Component 2 process: $p_{2}=500 /$ unit time, $h_{2}=\$ 0.2 /$ unit/unit time, $\theta_{2}=0.03, r_{2}=\$ 0.2 /$ unit.
Component 3 process: $p_{3}=400 /$ unit time, $h_{3}=\$ 0.3 /$ unit/unit time, $\theta_{3}=0.02, r_{3}=\$ 0.3 /$ unit.
Assembly process: $h_{e}=\$ 0.4 /$ unit/unit time, $\theta_{e}=0.01, r_{e}=\$ 0.4 /$ unit.

Then, applying the proposed algorithm, the iterations to find the optimal replenishment policy are shown in Table 1. After 14 iterations, we have $p_{e}^{*}=352.085, t_{0}^{*}=0.13902, t_{3}^{*}=1.58583, t_{1}^{*}=$ $1.05722, t_{2}^{*}=1.26866$, and $T^{*}=2.11444$. Then, from Eq. (13), we obtain $A C\left(t_{0}^{*}, t_{3}^{*}, p_{e}^{*}\right)=4054.75$. The three-dimensional total cost per unit time graph as $p_{e}^{*}=352.085$ is shown in Fig. 3. Note that we run the numerical results with distinct values of p_{e} $=310(10) 390$. The numerical results indicate that $A C\left(p_{e} \mid t_{0}^{*}, t_{3}^{*}\right)$ is strictly concave in p_{e}, as shown in Fig. 4. Consequently, we are sure that the local minimum obtained here indeed the global minimum solution.

Now, this numerical example is considered to study the effects of changes in the system parameters $h_{1}, h_{2}, h_{3}, h_{e}, s, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{e}, r_{1}$, $r_{2}, r_{3}, r_{e}, \beta_{0}, \beta_{1}$, and β_{2} on the optimal values of $t_{0}^{*}, t_{1}^{*}, t_{2}^{*}, t_{3}^{*}, T^{*}, p_{e}^{*}$, and $A C\left(t_{0}^{*}, t_{3}^{*}, p_{e}^{*}\right)$. The sensitivity analysis is performed by changing each of the major parameters by $+50 \%,+25 \%,-25 \%$, and -50%, taking one parameter at a time and keeping the remaining parameters unchanged. The results are shown in Table 2.

On the basis of the results of Table 2, the following observations can be made:
(1) When the values of parameters h_{1}, h_{2}, h_{3}, and h_{e} increase, $t_{1}^{*}, t_{2}^{*}, t_{3}^{*}$, and T^{*} decrease but $A C\left(t_{0}^{*}, t_{3}^{*}, p_{e}^{*}\right)$ increases. It implies that if the holding cost per unit per unit time increases, one should reduce the production run time to avoid unnecessary inventory. However, when the value of h_{3} exceeds some limit value (i.e., $h_{3}>0.357$), the production run time and cycle time start to increase for retarding the growth of the holding cost.
(2) As the shortage cost per unit per unit time, s, increases, $A C\left(t_{0}^{*}, t_{3}^{*}, p_{e}^{*}\right)$ increases while t_{0}^{*} decreases. It implies that one should focus on the length of the period during which shortage is allowed for reducing the shortage quantity.
(3) When the values of parameters $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{e}, r_{1}, r_{2}, r_{3}, r_{e}$, and β_{0} increase, $t_{0}^{*}, t_{1}^{*}, t_{2}^{*}, t_{3}^{*}, T^{*}$, and p_{e}^{*} are still fixed but the minimum total cost per unit time $A C\left(t_{0}^{*}, t_{3}^{*}, p_{e}^{*}\right)$ increases. If these costs and the defective rates could be reduced effectively, the total cost per unit time will be improved.
(4) With increase in the value of parameter $\beta_{1}, A C\left(t_{0}^{*}, t_{3}^{*}, p_{e}^{*}\right)$ increases. Therefore, in order to decrease minimum total cost per unit time, one should decrease the labor cost per unit time (i.e., wage or salary). Besides, p_{e}^{*} increases as β_{1} increases, which implies that the assembly rate should be increased for retarding the growth of the labor cost. But, when the value of β_{1} exceeds some limit value i.e., $\beta_{1}>660.846$, the assembly rate stops at $p_{e}^{*} \rightarrow p_{3}=400.000$ due to the constraint of $p_{e}, D<p_{e}<p_{3}$. Also, assembly rate stops at $p_{e}^{*}=300.000$ when $\beta_{1}<347.816$.
(5) With increase in the value of parameter $\beta_{2}, A C\left(t_{0}^{*}, t_{3}^{*}, p_{e}^{*}\right)$ increases. Therefore, in order to decrease minimum total cost per unit time, one should decrease the marginal cost of assembly rate. In addition, p_{e}^{*} decreases as β_{2} increases, which implies that the assembly rate should be decreased for retarding the growth of the manpower cost. But, when the value of β_{2} exceeds some limit value i.e., $\beta_{2}>0.0067$, the assembly rate stops at $p_{e}^{*}=300.000$ due to the constraint of p_{e}. Also, assembly rate stops at $p_{e}^{*} \rightarrow p_{3}=$ 400.000 when $\beta_{2}>0.0040$.

5. Conclusion

In this paper, we amended the paper of Pearn et al. (2011) with a view to making the model more relevant and applicable in practice. We investigated a two-stage assembly system in which the n required components are produced in Stage 1 (automatic process) and the end products are assembled form n components in Stage 2 (manual process). In addition, we assume that the production (assembly) cost is a convex function of assembly rate. Consequently, the production run time of all components $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, shortage time $\left(t_{0}\right)$, and assembly rate $\left(p_{e}\right)$ are the decision variables for minimizing the total related cost per unit. The proposed model can be adopted in inventory control of production system such as automobile, semiconductor, TFT-LCD, and food industries. The necessary and sufficient conditions of the existence and uniqueness of the optimal solution are shown. Next, we provided a simple algorithm to find the optimal solution of (t_{0}, t_{n}, p_{e}) under the constraint $D<p_{e}<p_{n}$. Furthermore, the effects of the model parameters on the optimal solutions and minimum total cost per unit time are investigated through a numerical example.

The proposed model can be extended in several ways. For instance, in real life, it may take a significant amount of time to rework (disassembling, correcting and then reassembling) for the seriously defective end products in the production assembly system. Therefore, it would be interesting to relax Assumption (3), and take the rework time into account when dealing with an
imperfect assembly system. Additionally, the machine, manpower, tools, and idle costs can also be considered to extend the proposed model.

Acknowledgement

The authors greatly appreciate the anonymous referees for their valuable and helpful suggestions regarding earlier version of the paper.

Appendix A

From Eqs. (14)-(16), we can obtain that
$t_{0}=\frac{h_{e} p_{n}\left(p_{e}-D\right)}{p_{e} D\left(h_{e}+s\right)} t_{n}$,

$$
\begin{align*}
& -k+\frac{p_{n}^{2} t_{n}^{2}}{2}\left[\sum_{i=1}^{n} h_{i}\left(\frac{1}{p_{e}}-\frac{1}{p_{i}}\right)\right] \\
& \quad=\frac{s p_{e} D t_{0}^{2}}{2\left(p_{e}-D\right)}-\frac{h_{e} D\left(p_{e}-D\right)}{2 p_{e}}\left[\left(\frac{p_{n} t_{n}}{D}\right)^{2}-\left(\frac{p_{e} t_{0}}{p_{e}-D}\right)^{2}\right] \tag{A2}
\end{align*}
$$

and
$\frac{p_{n}^{2} t_{n}^{2}}{2 p_{e}}\left(h_{e}-\sum_{i=1}^{n} h_{i}\right)-\frac{\left(h_{e}+s\right) D^{2} t_{0}^{2}}{2\left(p_{e}-D\right)}+\left(\beta_{2}-\frac{\beta_{1}}{p_{e}^{2}}\right) p_{n} t_{n}=0$.
From the above results, t_{0} is a function of t_{n}. Given any $D<p_{e}<p_{n}$, we substitute t_{0} in Eq. (A1) into Eq. (A2) and obtain
$G t_{n}^{2}-k=0$,
where
$G=\frac{p_{n}^{2}}{2}\left[\sum_{i=1}^{n} h_{i}\left(\frac{1}{p_{e}}-\frac{1}{p_{i}}\right)\right]+\frac{s h_{e} p_{n}^{2}\left(p_{e}-D\right)}{2 p_{e} D\left(h_{e}+s\right)}>0$.
Solving Eq. (A4), we can obtain the optimal value of t_{n} that is
$t_{n}^{*}=\sqrt{k / G}$.
Then, we substitute t_{n}^{*} in Eq. (A5) into Eq. (A1), the corresponding t_{0}^{*} is determined, i.e.,
$t_{0}^{*}=\frac{h_{e} p_{n}\left(p_{e}-D\right)}{p_{e} D\left(h_{e}+s\right)} \sqrt{k / G}$.
Furthermore, we also calculate that
$\left.\frac{\partial^{2} A C\left(t_{0}, t_{n} \mid p_{e}\right)}{\partial t_{0}^{2}}\right|_{\left(t_{0}, t_{n}\right)=\left(t_{0}, t_{n}^{*}\right)}=\frac{p_{e} D^{2}\left(h_{e}+s\right)}{p_{n} t_{n}^{*}\left(p_{e}-D\right)}>0$,
$\left.\frac{\partial^{2} A C\left(t_{0}, t_{n} \mid p_{e}\right)}{\partial t_{n}^{2}}\right|_{\left(t_{0}, t_{n}\right)=\left(t_{0}^{*}, t_{n}^{*}\right)}=\frac{p_{n} D}{t_{n}^{*}}\left[\frac{h_{e}\left(p_{e}-D\right)}{p_{e} D}+\sum_{i=1}^{n} h_{i}\left(\frac{1}{p_{e}}-\frac{1}{p_{i}}\right)\right]>0$,
and
$\left.\frac{\partial^{2} A C\left(t_{0}, t_{n} \mid p_{e}\right)}{\partial p_{e}^{2}}\right|_{\left(t_{0}, t_{n}\right)=\left(t_{0}^{*}, t_{n}^{*}\right)}=\frac{-h_{e} D}{t_{n}^{*}}$.
Therefore, the determinant of the Hessian matrix at the stationary point $\left(t_{0}^{*}, t_{n}^{*}\right)$ is

$$
\begin{aligned}
\operatorname{det}(\mathrm{H}) & =\frac{p_{e} D^{3}\left(h_{e}+s\right)}{t_{n}^{* 2}\left(p_{e}-D\right)}\left[\frac{h_{e}\left(p_{e}-D\right)}{p_{e} D}+\sum_{i=1}^{n} h_{i}\left(\frac{1}{p_{e}}-\frac{1}{p_{i}}\right)\right]-\frac{h_{e}^{2} D^{2}}{t_{n}^{* 2}} \\
& =\frac{h_{e} s D^{2}}{t_{n}^{* 2}}+\frac{p_{e} D^{3}\left(h_{e}+s\right)}{t_{n}^{* 2}\left(p_{e}-D\right)} \sum_{i=1}^{n} h_{i}\left(\frac{1}{p_{e}}-\frac{1}{p_{i}}\right)>0 .
\end{aligned}
$$

Consequently, the stationary point $\left(t_{0}^{*}, t_{n}^{*}\right)$ is the optimal solution for given $p_{e} \in\left(D, p_{n}\right)$.

Appendix B

(a) If $L P_{n} \geqslant 0$, we can find a unique solution $p_{e}^{*} \in\left(D, p_{n}\right)$ such that Eq. (18) is hold by the Intermediate Value Theorem. After assembling Eq. (18), the second-order derivative of $A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$ with respect to p_{e} becomes
$\frac{\mathrm{d}^{2} A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)}{\mathrm{d} p_{e}^{2}}=\frac{D}{p_{e} p_{n} t_{n}^{*}}\left\{2 \beta_{2} p_{n} t_{n}^{*}+\frac{\left(h_{e}+s\right) D^{3}}{\left(p_{e}-D\right)^{3}} t_{0}^{* 2}\right\}>0$.
Consequently, there exists a unique optimal assembly rate $p_{e}^{*} \in\left(D, p_{n}\right)$ which minimizes $A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$.
(b) If $L P_{n}<0$, then it can be obtained that $L\left(p_{e}\right)<0$ for $p_{e}^{*} \in\left(D, p_{n}\right)$. Therefore, from Eq. (17), we obtain that $\frac{\mathrm{d} A C\left(p_{e} t_{0}, t_{n}^{*}\right)}{\mathrm{d} p_{e}}=\frac{D L\left(p_{e}\right)}{p_{n} t_{n}^{*}}<0$ for $p_{e}^{*} \in\left(D, p_{n}\right)$, which implies that a large value of p_{e} causes a lower value of $A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$. Hence the minimum value of $A C\left(p_{e} \mid t_{0}^{*}, t_{n}^{*}\right)$ occurs at the point $p_{e}^{*} \rightarrow p_{n}$.

References

Balkhi, Z. T., \& Benldlerouf, L. (1996). A production lot size inventory model for deteriorating items and arbitrary production and demand rates. European Journal of Operational Research, 92, 302-309.
Ben-Daya, M., Hariga, M., \& Khursheed, S. N. (2008). Economic production quantity model with a shifting production rate. International Transactions in Operational Research, 15, 87-101.
Bhunia, A. K., \& Maiti, M. (1997). Deterministic inventory models for variable production. The Journal of the Operational Research Society, 48, 221-224.
Cárdenas-Barrón, L. E. (2007). On optimal manufacturing batch size with rework process at single-stage production system. Computers \& Industrial Engineering, 53, 196-198.
Cárdenas-Barrón, L. E. (2008). Optimal manufacturing batch size with rework in a single-stage production system - A simple derivation. Computers \mathcal{E} Industrial Engineering, 55, 758-765.
Cárdenas-Barrón, L. E. (2009a). On optimal batch sizing in a multi-stage production system with rework consideration. European Journal of Operational Research, 196, 1238-1244.
Cárdenas-Barrón, L. E. (2009b). Economic production quantity with rework process at a single-stage manufacturing system with planned backorders. Computers \mathcal{E} Industrial Engineering, 57, 1105-1113.
Chakraborty, S., \& Rao, N. V. (1988). EBQ for a multistage production system considering rework. Opsearch, 25, 75-88.
Crowston, W. B., Wagner, M., \& Williams, J. F. (1973). Economic lot size determination in multi-stage assembly systems. Management Science, 19, 517-527.
Darwish, M. A., \& Ben-Daya, M. (2007). Effect of inspection errors and preventive maintenance on a two-stage production inventory system. International Journal of Production Economics, 107, 301-313.
Dellaert, N., \& De Kok, T. (2004). Integrating resource and production decisions in a simple multi-stage assembly system. International Journal of Production Economics, 90, 281-294.
Dellaert, N. P., De Kok, A. G., \& Wang, W. (2000). Push and pull strategies in multistage assembly systems. Statistica Neerlandica, 54, 175-189.
Eiamkanchanalai, S., \& Banerjee, A. (1999). Production lot sizing with variable production rate and explicit idle capacity cost. International Journal of Production Economics, 59, 251-259.
Giri, B. C., Yun, W. Y., \& Dohi, T. (2005a). Optimal lot sizing in an unreliable twostage serial production-inventory system. International Transactions in Operational Research, 12, 63-82.
Giri, B. C., Yun, W. Y., \& Dohi, T. (2005b). Optimal design of unreliable productioninventory systems with variable production rate. European Journal of Operations Research, 162, 372-386.
Jamal, A. A. M., Sarker, B. R., \& Mondal, S. (2004). Optimal manufacturing batch size with rework process at single-stage production system. Computers \mathcal{E}^{\prime} Industrial Engineering, 47, 77-89.
Karimi, I. A. (1992). Optimal cycle times in multistage serial systems with set-up and inventory costs. Management Science, 38, 1467-1481.
Khouja, M., \& Mehrez, A. (1994). Economic production lot size model with variable production rate and imperfect quality. The Journal of the Operational Research Society, 45, 1405-1417.
Kim, D. S. (1999). Optimal two-stage lot sizing and inventory batching policies. International Journal of Production Economics, 58, 221-234.

Kumar, U., \& Vrat, P. (1979). Optimization of single-item multistage stochastic production inventory systems. Journal of Operational Research Society, 30, 547-553.
Larsen, C. (1997). Using a variable production rate as a response mechanism in the economic production lot size model. Journal of the Operational Research Society, 48, 97-99.
Pearn, W. L., Su, R. H., Weng, M. W., \& Hsu, C. H. (2011). Optimal production run time for two-stage production system with imperfect processes and allowable shortages. Central European Journal of Operational Research, 19, 533-545.
Sarker, B. R., Jamal, A. M. M., \& Mondal, S. (2008). Optimal batch sizing in a multistage production system with rework consideration. European Journal of Operational Research, 184, 915-929.
Schmidt, C., \& Nahmias, S. (1985). Optimal policy for a two-stage assembly system under random demand. Operations Research, 33, 1130-1145.

Schwarz, L. B., \& Schrage, L. (1975). Optimal and system myopic policies for multiechelon production/inventory assembly systems. Management Science, 21, 1285-1294.
Su, C. T., \& Lin, C. W. (2001). A production inventory model which considers the dependence of production rate on demand and inventory level. Production Planning and Control, 12, 69-75.
Szendrovits, A. Z. (1975). Manufacturing cycle time determination for a multi-stage economic production quantity model. Management Science, 22, 298-308.
Taha, H. A., \& Skeith, R. W. (1970). The economic lot sizes in multistage production systems. IIE Transactions, 2, 157-162.

[^0]: th This manuscript was processed by Area Editor Joseph Geunes.

 * Corresponding author.

 E-mail addresses: chj@mail.tku.edu.tw (H.-J. Chang), runghung316@gmail.com (R.-H. Su), ctyang@cyu.edu.tw (C.-T. Yang), mingweiweng@gmail.com (M.-W. Weng).

